A Stable Penalty Method for the Compressible Navier-Stokes Equations: II. One-Dimensional Domain Decomposition Schemes

نویسنده

  • Jan S. Hesthaven
چکیده

This paper presents asymptotically stable schemes for patching of nonoverlapping subdomains when approximating the compressible Navier–Stokes equations given on conservation form. The scheme is a natural extension of a previously proposed scheme for enforcing open boundary conditions and as a result the patching of subdomains is local in space. The scheme is studied in detail for Burgers’s equation and developed for the compressible Navier–Stokes equations in general curvilinear coordinates. The versatility of the proposed scheme for the compressible Navier–Stokes equations is illustrated for quasi-one-dimensional transonic nozzle flows and for flows around an infinitely long circular cylinder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stable Penalty Method for the Compressible

This paper, concluding the trilogy, develops schemes for the stable solution of wave-dominated unsteady problems in general three-dimensional domains. The schemes utilize a spectral approximation in each sub-domain and asymptotic stability of the semi-discrete schemes is established. The complex computational domains are constructed by using non-overlapping quadrilaterals in the two-dimensional...

متن کامل

Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier-Stokes equations

Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier–Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coup...

متن کامل

Discontinuous Galerkin method for Navier-Stokes equations using kinetic flux vector splitting

Kinetic schemes for compressible flow of gases are constructed by exploiting the connection between Boltzmann equation and the Navier-Stokes equations. This connection allows us to construct a flux splitting for the NavierStokes equations based on the direction of molecular motion from which a numerical flux can be obtained. The naive use of such a numerical flux function in a discontinuous Gal...

متن کامل

A Stable Penalty Method for the CompressibleNavier - Stokes Equations

The purpose of this paper is to present asymptotically stable open boundary conditions for the numerical approximation of the compressible Navier-Stokes equations in three spatial dimensions. The treatment uses the conservation form of the Navier-Stokes equations and utilizes linearization and localization at the boundaries based on these variables. The proposed boundary conditions are applied ...

متن کامل

A Stable Penalty Method for the Compressible Navier-Stokes Equations: I. Open Boundary Conditions

The purpose of this paper is to present asymptotically stable open boundary conditions for the numerical approximation of the compressible Navier-Stokes equations in three spatial dimensions. The treatment uses the conservation form of the NavierStokes equations and utilizes linearization and localization at the boundaries based on these variables. The proposed boundary conditions are applied t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997